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Spatial patterning of coral reef sessile benthic organisms can

constrain competitive and demographic rates, with implications

for dynamics over a range of time scales. However, techniques

for quantifying and analysing reefscape behaviour, particularly

at short to intermediate time scales (weeks to decades), are

lacking. An analysis of the dynamics of coral reefscapes

simulated with a lattice model shows consistent trends that can

be categorized into four stages: a repelling stage that moves

rapidly away from an unstable initial condition, a transient

stage where spatial rearrangements bring key competitors

into contact, an attracting stage where the reefscape decays to a

steady-state attractor, and an attractor stage. The transient

stage exhibits nonlinear dynamics, whereas the other stages

are linear. The relative durations of the stages are affected

by the initial spatial configuration as characterized by coral

aggregation—a measure of spatial clumpiness, which together

with coral and macroalgae fractional cover, more completely

describe modelled reefscape dynamics. Incorporating

diffusional processes results in aggregated patterns persisting in

the attractor. Our quantitative characterization of reefscape

dynamics has possible applications to other spatio-temporal

systems and implications for reef restoration: high initial

aggregation patterns slow losses in herbivore-limited systems

and low initial aggregation configurations accelerate growth in

herbivore-dominated systems.

1. Introduction
Coral reefs, one of the most biodiverse ecosystems on the planet,

are facing unprecedented losses and degradation in system

http://crossmark.crossref.org/dialog/?doi=10.1098/rsos.181703&domain=pdf&date_stamp=2019-02-20
mailto:mbritomillan@gmail.com
https://doi.org/10.6084/m9.figshare.c.4387988
https://doi.org/10.6084/m9.figshare.c.4387988
https://doi.org/10.6084/m9.figshare.c.4387988
http://orcid.org/
http://orcid.org/0000-0002-4265-1528
http://orcid.org/0000-0001-8752-1586
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


royalsocietypublishing.org/journal/rsos
R.Soc.open

sci.6:181703
2
function [1]. Although reef decline and degradation have been well documented, the dynamics of reef

recovery have received far less attention owing in part to the relatively slow pace of reef growth [2–4].

Characterization of reef recovery dynamics is especially relevant for expensive reef restoration

programmes that seek to maximize growth of coral fragments to rehabilitate spaces that were once

resilient coral-dominated reefs [5]. Because of the slowly evolving nature of coral reef benthic

seascapes (or reefscapes), computer models and complementary long-term monitoring are essential

for inferring the mechanisms underlying transient coral reef recovery pathways, with the goal of

facilitating possible interventions that minimize the time required to achieve habitat restoration.

The specific mechanisms operating during transient pathways connecting healthy reef states,

dominated by reef-building coral and degraded reef states, dominated by fleshy algae, have only

recently begun to be investigated as reefscape modelling and field studies increasingly shift their

focus from steady-state ‘endpoint’ or attractor perspectives towards transient dynamics [6–12]. This

change in perspective reflects a growing awareness that the time span over which data are collected

for scientific and management studies is shorter in duration (months to years) than the time needed

for disturbed coral reef systems to decay to an attractor (i.e. a coral-dominated or fleshy algae-

dominated end state). Processes (e.g. recolonization or degradation) observed over these short

durations probably reflect transient dynamics rather than stability at an attractor.

The dynamics of transient stages in substrate-bound systems such as coral reefs are dependent on

interactions between major competitors and are expected to be affected significantly by reefscape

spatial patterns [13–19]. Spatial location of individuals strongly influences outcomes of ecological

interactions because these interactions occur over relatively short distances and are highly sensitive to

the identity of neighbours [20,21]. For example, in non-coral ecosystems such as marsh tussocks of

Carex stricta, ecological interactions resulting in local growth inhibition from shade and radially

accumulating wrack (dead plant material) have been found to affect development of regularly spaced

patterns at larger scales [22]. For coral reefs, we expect that intermediate-time-scale behaviour will be

controlled, in part, by spatial arrangements that influence competition.

Ecological competition is implicitly dependent on context, and as such can influence dynamics. For

example, most competitive interactions are density-dependent, with density of competitors being linked

nonlinearly to vital rates (e.g. probability of survival or rate of growth) [20]. Among sessile organisms,

the effective density of competitors is determined by the spatial ‘halo of interaction’ for individuals (area

within which one organism can interact significantly with a competitor) and the relative spatial

positioning of competitors. Therefore, the degree of nonlinearity is linked to spatial configurations of

sessile organisms [19,20]. Such linkages between spatial patterns and dynamics have been studied in

chemical reaction–diffusion models, where nonlinearity is excited by spatially localized finite amplitude

perturbations that give rise to irregular spatio-temporal patterns significantly affecting how a system

arranges itself to arrive at a patterned configuration [23]. In simplified ecological systems, increased

aggregation has been shown to increase the degree of nonlinearity (e.g. increased spatial proximity

between sessile organisms leads to more intense, localized competitive interactions) and to introduce

time lags, or delays in expected time to dominance or extinction of particular organisms [24]; in

specialized cases, species coexistence occurs despite competitive asymmetry that would lead to serial

extinction in a less-clumped system [18]. Accounting for aggregation patterns when initializing more

complicated, competition-based ecological systems is expected to result in time-evolution pathways that

are markedly different from those that originate with either a homogeneous or random configuration.

Aggregation is a measure of the degree to which individuals of the same type are spatially clumped, and

high levels of aggregation are a common feature in the distribution of substrate-bound organisms, including

stony corals [25–28]. Given that the ‘halo of interaction’ for most corals is limited in extent, often constrained

largely to immediate neighbours with shared borders, conspecific aggregation is expected to have a direct

impact on realized competition. By changing the length of borders open to interactions between

competitive, heterospecific groups, higher levels of aggregation result in individuals interacting less with

competitors in other groups and more with members from the same group than would be expected from

tracking overall abundance [14]. For example, in coral and ascidian aggregation experiments, the rate

with which strong competitors take over space is significantly reduced when aggregated, as their

resources are redirected towards competing with each other, allowing weaker competitors to persist

longer [15,17]. In reef restoration experiments focused on individual coral colony health, close spacing

between coral fragment outplants has been found to increase branching coral vertical growth rates,

although overall fitness and long-term survival decreases [29]. In simulated agent-based coral fragment

models, growth is maximized in uniform, evenly spaced, gridded coral transplant arrangements,

although neither competition with algae nor herbivory level were considered [16]. Patterns of
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aggregation are likely to influence the dynamics of coral reef benthic organisms at spatial scales larger than

that of the single individual, extending to reefscape patterns and their longer time scales.

We used a lattice model of interacting coral and algae organisms parametrized for Caribbean coral

reefs to investigate the dynamical evolution of hierarchically ordered (transitive) competing functional

benthic groups with varying initial aggregation. Because coral reefs are complex systems, we

employed the theoretical and analytical methods of complexity to investigate the following questions:

(1) How do patterns of initial aggregation affect coral reef system pathways towards endpoint attractors

and how do differences depend on herbivore abundance (i.e. reef conservation scenarios)?

(2) Do pathways exhibit linear (one-way) or nonlinear (strong two-way) dynamics and what can be

inferred from the presence or absence of nonlinearity?

(3) How do biologically driven diffusive processes (�colony fusion) contribute to the development of

aggregated reefscape patterns?

(4) What minimum set of variables (state space axes) characterize reefscape transient dynamics and

evolution towards the attractor?

2. Methods
2.1. Spatially explicit reef benthic model
Simulations were undertaken using a spatially explicit lattice model that previously has been used to

investigate coral reef benthic behaviour under spatially varying patterns of herbivory [7,30]. The model

domain consists of a 200 � 200 cell lattice simulating a 400 m2 area with periodic boundary conditions in

both horizontal directions (i.e. a toroidal lattice); large enough to capture cross-reef spatial patterns based

on constituent-scale dynamics (for thousands of coral colonies). Additionally, this scale is in line with

current studies based on larger-area benthic assessments using reef photomosaic data that are being

collected across the tropics for analyses of spatial patterns and structural complexity (e.g. 10 � 10 m plots

in [27] and 15 � 15 m plots in [31]) as well as the spatial scale of many active coral outplanting and

restoration efforts.

The model is parametrized for Caribbean coral reef benthic community dynamics and includes cells

representing four spatially dominant, mutually exclusive functional groups: slowly evolving stony coral

(CO), early successional turf algae (TA), later successional macroalgae (MA) and crustose coralline algae

(CCA), which act as a type of foundational substrate for growth of the other forms. Ecological processes

determining the time evolution of the functional groups include competition, growth, recruitment, algae

succession, mortality and herbivory (figure 1a). Model simulations were run with time steps of 0.025

years for durations that included decay to steady-state attractors (10 to approx. 500 years). All rates

used are based on the original model [30] and references therein.

Competitive outcomes between functional groups are based on a competitive hierarchy which, in

order of decreasing dominance, is large CO (cells belonging to colonies larger than the dominant

colony size threshold, Cth ¼ 900 cm2), MA, small CO (cells belonging to colonies below the colony size

threshold), TA and CCA. The competitive hierarchy, including the existence of a coral colony size

threshold above which colonies grow and survive, has been well documented through tracking of

coral colonies in regular contact with MA in field observations [32–34]. CCA in the model also

represents open space, ignoring possible facilitating or competitive effects of certain CCA species [35];

inclusion of such facilitation or competitive effects has been confirmed to not substantively affect

model results [7]. All CO cells were set to represent branching coral types, which exhibit potentially

unlimited growth, although dynamics are qualitatively similar for ‘massive’ coral with colony-specific

asymptotic growth [30].

Cell transition probabilities in the model are a function of the current state of a cell and that of its four

adjacent neighbour cells (von Neumann neighbourhood), with outcomes determined by the competitive

dominance hierarchy. Growth of CO, TA and MA occurs clonally (vegetatively) by laterally expanding

into neighbouring space. The probability of an individual cell being overgrown by a neighbouring cell

is dependent on the growth rate of the neighbouring functional type, Gx, where x denotes the

functional type CO, TA or MA, and nx, ranging from 0 to 4, denotes the number of neighbouring cells

occupied by the functional type x. Therefore, the probability of a cell being overgrown by functional

type x is 1 – (1 – Gx)nx. Growth rates for CO, TA and MA are 0.01, 1.0 and 0.5 m yr21, respectively;

previous sensitivity analyses have found model results are robust to changes in growth parameter

values [30].
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Figure 1. (a) Cell transitions among the four functional groups (outlined in representative colour used in lattice) in the model are
based on characterizations of coral reef dynamics as transition probabilities or state-dependent functions ( f (x)) that define
probabilities, including competition (dashed arrows), growth, recruitment, algae succession, mortality and herbivory. (b) Model
is initialized with various arrangements of coral patches with aggregation varying from 0.66 to 0.99 (fractional cover held
constant). (Colours outlining images represent groups in lattice.)
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Recruitment of benthic types occurs through the arrival and survival of mobile propagules into the

juvenile population present on the reef. In the model, recruitment for each functional group is the

composite probability of planktonic arrival in addition to survival into the juvenile class (i.e. growth

to the size of a cell on the lattice). CO recruits to cells occupied by either CCA or TA with probability

0.01 yr21; TA recruits to CCA cells with probability 0.80 yr21. Because MA recruits from growing out

of TA assemblages on reefs, a TA cell undergoes succession into MA with probability 0.33 yr21. If a

cell is designated to be overgrown by a neighbouring cell as well as undergo recruitment, the

outcome is determined by the competitive hierarchy.

Natural background mortality can affect all organisms. For algae on the reef, the tendency to exist as

an assemblage of multiple individuals limits the likelihood of individual mortality in a particular area.

Therefore, in the model, algae mortality occurs only from herbivory (described below). For coral,

which are long-lived and dominant competitors, CO cell mortality is simulated with probability

0.15 yr21 and results in CO cells converting into CCA cells.

Herbivory of algae on coral reefs naturally occurs from a suite of reef fishes and invertebrates.

Because of their high mobility, herbivorous fish, which are the main herbivores in the Caribbean, can

explore wide areas of the benthic reefscape in their search for food. Therefore, grazing is simulated in

a spatially random manner across the lattice, with TA and MA cell types having an equal likelihood

of being consumed and converted to CCA. Herbivory was set to occur at a moderate grazing rate of

12% of algae cells grazed per time step. This rate is comparable to a median-range mixed assemblage

of herbivorous fishes with biomass of approximately 14 g m22 [9,36], which decreases at a rate

proportional to the total available TA and MA cells if fractional cover of algae decreases on the lattice.
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The results presented here are insensitive to the particular ways the ecological processes were

parametrized in the model. For example, indirect effects of spatially constrained grazing on coral–

algae competition (e.g. from intensified grazing close to large corals that offer fish protection [37,38])

and coupling fish to the benthos, were found to not significantly alter pathway behaviour (refer to

electronic supplementary material, ESM8). This does not mean that grazing rate, or herbivory level,

has no influence on spatio-temporal dynamics, as has been found elsewhere [9,39] and as

demonstrated by our exploration of the impact of levels of herbivory (described at end of this section).

Instead, it highlights how the transient stage that arises from more clumped spatial configurations is

robust to the grazing algorithm employed. Lastly, algal food preference by grazers previously has

been shown to have limited impact on model results [7]. For further details on the parametrization

and construction of the coral reef benthic model, refer to Sandin & McNamara [30].

2.2. Aggregation
The overall time-evolution of the reefscape was characterized using (i) pathways of fractional cover fx,

where x is CO, TA, MA or CCA, calculated as the area occupied by each functional type of cell

divided by the total area of the lattice and (ii) coral aggregation (agco), defined in equation (2.1) as the

number of coral-to-coral cell boundaries divided by the total number of CO cell boundaries over the

lattice (N * M),

agco ¼
PN

i¼1

PM
j¼1 (rco(i,j) nco(i,j))

4 N �M fco,
ð2:1Þ

where rco (i,j) is 1 if the (i,j) cell was occupied by CO and 0 otherwise and nco(i,j ) is the number of

neighbouring CO cells (0–4). Fractional cover of CO is represented by fco. This metric for aggregation

is 0 when no two CO cells are neighbours and approaches 1 when all CO cells are arranged in a

single clump.

To investigate the effect of aggregation on reefscape pathways, 12 initial configurations varying only

in aggregation from 0.66 to 0.99 with CO/TA/MA/CCA initial fractional covers of 0.3/0.5/0.20/0.0

were constructed (figure 1b). These configurations were created using gridded patterns of CO cells

with varying distances between colonies of size 30 � 30 cm (this size maximized the number of

possible configurations using colonies above the competitive size threshold), plus one configuration

with random placement of coral colonies (aggregation ¼ 0.71). Each initial configuration was used to

initiate 16 simulations, each with a different random number generator seed. All simulations were

conducted without disturbances (e.g. storm events) because our focus is on the intrinsic ecological

dynamics of the reefscape and because numerical experiments conducted with stochastic disturbance

events did not significantly influence the delay effect of aggregation on reefscape pathways (electronic

supplementary material, figure S6).

2.3. Pathway characterizations
Quantitative features along pathways (e.g. inflection points) yielded four characteristic stages: repelling,

transient, attracting and attractor stages (figure 2). For the repelling and attracting stages, the time scale

(i.e. the response time related to the internal dynamics of the system) was calculated over the duration of

the stage, whereas stage duration was determined for the transient. Boundaries between stages were

defined quantitatively using automated algorithms tailored for these simulated time series based on

knowledge of the types of solutions possible in the different stages. Specifically, the linearized

solutions to escape from and decay to the repellor/attractor in the repelling/attracting stages are

exponential rise/decay [40]. Generally, boundaries were determined by following pathways forward

in time and flagging the time step where the slope of a fit to an exponential function over a window

of three time steps changed by more than 1.5 times the standard deviation of the slope in the

previous time step window. For each random-seed-based set of aggregation levels, the boundary

between repelling and transient stages first was determined for the initial configuration that arrived at

the attractor the fastest (the most regular initial aggregation pathway). To effectively compare the time

scales of short-duration repelling stages while minimizing effects of noise from longer-duration

initializations, this same repelling-to-transient boundary value then was used for the remaining

pathways in that set. The boundary between transient and attracting stages was found by identifying

the inflection point (where the derivative of the pathway within the transient stage changes sign). The
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boundary between the attracting stage and the attractor stage was found by moving forward along the

pathway to flag the point where the slope of a fit to an exponential function over a window of 10 time

steps differed by more than two standard deviations of the slope in the previous window. Because the

position of this point is sensitive to small stochastic fluctuations arising from probabilistic cell transitions,

the fractional cover pathway was smoothed by employing a commonly used iterative diffusion method,

in which the diffusion equation is applied to the curve for selectively smoothing at small scales [41].

2.4. Herbivory scenarios
The level of herbivory on the reef is expected to impact coral–algae competition, because reefs with

depressed herbivore abundances favour growth of competitively dominant algae [42]. Such conditions

can influence expectations of spatial configurations with important implications in reef conservation

management. In the model, the level of algae herbivory was varied to investigate if pathway

dependence on initial aggregation (using four representative aggregation levels: 0.66, 0.77, 0.89, 0.99)

changed in herbivore-abundant (24% of algae grazed per time step) versus herbivore-limited (4% of

algae grazed per time step) reef conditions (n ¼ 50).

2.5. Characterizing underlying dynamics (linear versus nonlinear)
To assess the nature of the dynamics underlying the pathways of the reef system, spatio-temporal

forecasting was applied to the transient, attracting and attractor stages. The repelling stage is too short

for this method. Temporal and spatial forecasting operate by reconstructing state space using lagged

replicates of a portion of a series of points sampled in time [43] or space and time [44]. Here, the

reconstructed state space consisted of a cube of cells with two of the directions being spatial

snapshots of the lattice and the third being time at intervals of one year [45]. The reconstructed state

space is then probed to explore the role of nonlinearity by evaluating prediction skill along a given

trajectory in the state space as a function of the number of neighbour trajectories used to make the

prediction (30 000 points using fivefold cross validation). Forecast accuracy remaining constant with

increasing number of nearest neighbours is consistent with linear dynamics. Forecast accuracy that

reaches a maximum at moderate number of nearest neighbours and then decreases is consistent with

nonlinear dynamics.
3. Results
Each of the quantitatively defined stages (figure 2: repelling, transient, attracting, attractor) is related to

the underlying modelled ecological dynamics. The repelling stage captures the initial response of the
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system to the initial aggregation condition. Coral (CO) fractional cover pathways exhibit an initial decline

attributed to limitations imposed on CO growth by the limited number of CO cells bordering non-CO

cells. During this stage, pathways exponentially move away from a repelling fractional cover value, as

predicted by linearization around a repellor. In the transient stage, late successional MA (transitioning

from early successional, rapidly recruiting TA cells) actively competes with CO. The transition to the

attracting stage is marked by an increase beyond a threshold number of dominant CO cell neighbours

of MA, where MA becomes patchy or fragmented enough to expose sufficient borders for

the dominant CO to overgrow it and for grazers to consume the remainder. The transition to the

attracting stage, where pathways exponentially decay towards the attractor, is marked by steady

recruitment and growth of CO onto the foundational substrate—CCA—and TA cells. In the attractor

stage, the balance between CO overgrowth of CCA/TA and CO mortality results in a simulated

reefscape dominated by CO (0.586+0.002 s.d. fractional cover and 0.640+ 0.003 s.d. aggregation) and

the passive CCA.

Increased aggregation in the initial configuration (blue to red pathways in figure 3) affects CO and

MA (figure 3a and b, respectively) pathways by prolonging arrival to the attractor. As initial

aggregation increases, each CO fractional cover pathway exhibits an increasingly lower minimum

(figure 3a). This change reflects CO mortality outweighing CO growth more intensely when CO cells

become limited largely by CO cell neighbours that impede growth into surrounding space. CO

fractional cover pathways begin to recover from the decline only until enough CO cells undergo

mortality, thereby opening space (de-aggregating the pattern) for CO growth onto newly recruited

CCA and TA. The CO repelling exponential time scale increases markedly as aggregation increases,

with a doubling of the time scale between dispersed and clumped cases (figure 3c). This signifies that

aggregation can constrain small-scale ecological processes of growth and competition that manifest in

the pathways of fractional cover. The MA repelling time scale (figure 3d ) exhibits a trend in the

opposite direction, decreasing as aggregation increases in a manner that appears to be coupled to CO.

MA competitive losses to the dominant CO cells are minimal and localized to the perimeter of the

clumped CO, so that MA more rapidly takes over the inferior TA/CCA dominating the lattice,

thereby reducing the MA time scale as aggregation increases. Transient durations for both CO and

MA (figure 3e,f ) show a sharply increasing trend as aggregation increases, with the difference in

transient duration between dispersed and clumped initial conditions exhibiting a 10-fold increase. This

is consistent with the duration of the influence of the initial condition found from power spectral
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analyses (electronic supplementary material, figure S1). The transient stage is mostly absent (duration

between 0 and 5 years) for initial aggregations less than 0.72, present in only some iterations for initial

aggregation up to 0.75, and rises sharply to greater than 40 years thereafter, suggesting a threshold

initial aggregation exists for the presence of a transient stage (figure 3e,f ). Initial aggregation does not

influence attracting time scales of either CO or MA (figure 3g,h) because the initial pattern at this late

stage nearly disappears (figure 2 snapshots). In summary, initial spatial configuration is critical for

determining the presence and length of the transient stage along reefscape pathways.

A second set of conservation scenario experiments to investigate how varying reef condition affects

the results indicates that higher initial aggregation significantly increases the total time required to arrive

at the attractor by a factor of approximately 1.5 for herbivore-abundant reefs and approximately 4.0 for

herbivore-limited reefs (figure 4; electronic supplementary material, figure S4). For the most clumped

initial aggregation (0.99), the time delay in arriving at the attracting stage varies 10-fold between

intact herbivore-abundant and degraded herbivore-limited reefs.

To investigate the nature of the dynamics underlying the stages, a spatio-temporal forecasting

method was employed [44,45]. The results are consistent with dominance of linear dynamics, or weak

one-way interactions (e.g. growth), in the attracting and attractor stages, and nonlinear dynamics, or

strong two-way interactions (e.g. active coral–algae competition), in the transient stage (figure 5).

Forecast skill is similar for all pathways across aggregation levels, except for cases with short transient

stages (less than 5 years), for which the strength of nonlinearity is marginal (electronic supplementary

material, figure S3).

In all simulation results described above, attracting and attractor stages are marked by a lack of spatial

clumping significantly above the size of a cell. The lack of spatial patterning appears to be a characteristic of
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the dynamics of this particular model, because the ratio of decay time scales of fast- (i.e. coral growth) and

slow-scale (i.e. fractional cover and aggregation) processes is near unity (further details in electronic

supplementary material, ESM5). Spatial patterning requires scale separation, or the decoupling of

dynamical interactions between different scales (e.g. in forests: time scales of tree growth are significantly

shorter and scale separated from time scales associated with development of forest patterns [46]). Scale

separation, in turn, requires dissipation, which acts to smooth, damp or mix differences between

elements of the system. So dissipation in reefscapes, in the form of diffusion, involves smoothing out of

interfaces between patches of coral and other functional groups and could have a biological origin in

coral colony fusion processes. Dissipation enforces scale separation by damping fast-scale dynamics on

the slow scales of the pattern leading to self-organized spatial configurations [47,48]. To test whether

adding dissipation to the model would induce aggregated reefscape patterns in the attractor, the model

was modified to include CO diffusion using a range of diffusion constants (figure 6; electronic

supplementary material, ESM5). The results indicate that diffusion enables self-organization and

clumping in the model, which is in line with previous studies that have linked diffusive or differential

flow processes with regular pattern formation [47,49]. However, diffusion also acts to depress the steady-

state CO fractional cover. This agrees with the previously quantified effect of increased initial

aggregation, where fewer coral borders open to competitive interactions result in mortality processes

outweighing growth processes. CO diffusion results in retention of some of that clumpiness, or growth

limitation, which translates to a lower CO fractional cover at the attractor.
4. Discussion
A dynamical analysis of a simulated coral reefscape shows that pathways starting from clumped initial

conditions consistently can be categorized into four stages: repelling (early rapid shift), transient (slow
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steady increase from spatial rearranging), attracting (decay to endpoint attractor) and attractor (steady

state). Our model results suggest that aggregation sets the context for the processes of coral growth

and coral–algae competition. As initial aggregation increases, coral repelling time scale and duration

of the transient stage increase because the length of coral borders exposed to non-coral interactions

decrease and thereby limit coral expansion (through growth and competition). This model result

reflects ecological processes driven by neighbourhood interactions at patch boundaries where,

depending on conditions (for reefs: herbivore abundance, nutrient and/or sediment input, etc.),

outcomes of competition are determined. Combined with other modelling and experimental studies

that highlight the influence of boundaries between competitors [15,19,50], our model results suggest a

boundary-centred focus for future reefscape models that build on and go beyond lattice models of

reefs. For example, one promising approach involves using continuum models that integrate over both

space and time to capture the dynamics of interacting patches of coral reef functional groups.

For reef restoration initiatives that seek to maximize the growth of coral colony fragments cemented to

artificial structures of various geometries and arrangements [51], our model results suggest that increasingly

aggregated configurations of large, competitively dominant fragments can limit growth in both herbivore-

abundant and herbivore-limited systems (figure 4; electronic supplementary material, figure S4). Our

results also highlight how smaller, competitively inferior coral colonies can persist in a clumped pattern

within the context of a degraded herbivore-limited reef state (electronic supplementary material, figure

S8), owing to the reduction of deleterious coral–algae borders. This effect is enhanced if fusion between

genetically similar fragments occurs and increases coral survival, given the improved ability of larger

individuals to withstand assaults [52,53]. When considering the establishment of protected reef zones for

restoration, complementing an evaluation of reefscape local condition with level of coral colony

aggregation can help target locations that maximize persistence or coral growth and dominance.

The significance of a protracted transient stage dominated by nonlinear dynamics is that the interactions

of organisms are more actively, or strongly, linked during this stage (e.g. in this study, active competition

between coral and macroalgae). In other words, competition could appear different during transient

(recently disturbed) periods than during steady-state ‘pristine’ conditions (long after a disturbance).

Further studies of reefscapes in transient stages, as when recovering from recent perturbations or when

intact, herbivore-abundant reefscapes are on the path towards herbivore-limited, macroalgae-dominated

systems could continue to inform conservation monitoring studies and interventions [54].

The existence and duration of transients in the model depends on clumped competitively dominant

coral colonies gradually outcompeting algae. The relationship of transients to initial clumping

configurations is supported by the existence of a threshold aggregation above which the dynamically

nonlinear-dominated transient stage emerges. Previously, transient behaviour has been linked to

increasing growth rates in models that follow density-dependent population dynamics as a function of

both space and time [55–57]. However, this is the first time, to our knowledge, that a threshold

aggregation for transient behaviour has been identified in modelled subtidal systems. These model

results are consistent with the argument that spatial distribution, as characterized by aggregation,

plays a role in determining the nature of pathways towards large-scale system structure and function.

Therefore, level of aggregation complements metrics such as competition coefficients, density and the

abundance of competitors in characterizing systems dominated by intense competition for space,

although investigating explicit links to non-coral systems (e.g. tidal marshes, arid systems, etc.) will

require futher research [19,47].

The role of aggregation as an additional key spatial metric of reefscape dynamics also is evident when

constructing the reefscape state space (i.e. the multi-dimensional space of a dynamical system where all

possible states can be mapped). Previous studies of reefscape dynamics have used only two dimensions,

coral and macroalgae fractional cover, as the axes of state space (e.g. [9,30]). However, in the reefscape

model, trajectories in a two-dimensional state space of coral and macroalgae fractional cover intersect

themselves and other trajectories when varying initial aggregation (figure 7a), indicating that two

dimensions (coral and macroalgae fractional cover) do not adequately represent the dynamics of the

reefscape model (because trajectories that resolve dynamics do not cross in state space [58]). Adding

aggregation as a third dimension of state space removes most trajectory crossings and further resolves

trajectory pathways towards the attractor; a finding that also is supported by an independent method

(method of false nearest neighbours: the fraction of false nearest neighbours drops to near zero at three

embedding dimensions) [59] (figure 7b; electronic supplementary material, figure S2). That benthic coral

reef system dynamics are better represented using three dimensions supports our earlier results on the

key role of aggregation in spatio-temporal dynamics. This theoretical finding indicates that

comparatively large-scale reefscape field observations that can track aggregation to generate long-term
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spatio-temporal series (as recently has become possible with large-area ortho-rectified two- and three-

dimensional photomosaics that resolve the boundaries of coral [27,60]) might contribute towards better

resolving reefscape dynamics.

Ecological modelling and experimentation typically employ random initial configurations [61,62]; our

model results suggest that clumped initial configurations can significantly influence dynamical pathways in

spatially extensive systems, and so measuring aggregation can inform analyses, in our case, of coral reef

dynamics. In coral reefs, these theoretical results can be tested in long-term monitoring or restoration

experiments covering large-scale segments of reefs (approx. 100 m2 or more with biannual or annual

surveys) by tracking coral colonies out-planted over a range of aggregation levels. We are aware of at least

one experiment that has been initiated based on our results (J.E.S. 2017, personal communication). Generally,

the resulting delay effect arising from more clumped initial configurations on dynamical pathways suggests

that analyses of models of other spatially extended systems might benefit from considering the effect of

initial spatial configurations that deviate from random distributions on modelled system dynamics.

Under rapidly changing environmental conditions owing to global warming and other anthropogenic

impacts, coral reefs can be increasingly perturbed far from their steady state [63,64]. A brief model

exploration of recovery from storm disturbances showed decreased persistence of coral on reefscapes with

pathways retaining initial clumped configurations characteristic of the transient stage (refer to electronic

supplementary material, ESM6; figure S7). Future work could further investigate the impact of recurrent

and intensified storm disturbances on transient dynamics and underlying spatial configurations, although

broad generalizations might be challenging owing to the site-specific nature of disturbances [65].

Coral reefs are complex systems exhibiting variations across basins; these variations provide a multitude

of opportunities for testing and expanding the implications of our theoretical research [26,66]. For example,

macroalgae interactions and algal colonization have been observed to be far less frequent in the Indo-Pacific

than in the Caribbean [67], which could affect the relative durations of transient dynamics in the two
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regions. Studying locations with a larger number of benthic groups, with differing life-history traits and

growth morphologies, could also illuminate aspects of transient dynamics, especially because an overall

tendency for clumping has been observed across taxa [26–28,68]. Another possible study could test how

aggregation affects reefscape pathways in conditions dominated by intransitive competitive interactions,

or indirect interactions between multiple players, rather than transitive, or direct interactions (which has

been our focus here) [69].

In conclusion, initial spatial clumpiness, as characterized by aggregation, delays arrival of simulated

coral reef fractional cover pathways towards their endpoint attractors by modulating the duration of the

transient stage (one of the four characteristic dynamical stages defined). This delay effect on pathways is

magnified (10-fold) in herbivore-limited reef conditions, where coral growth is further slowed by

conditions that favour algae competitors. The character of the dynamics at each stage of a reefscape

pathway is determined by aspects of the underlying ecology; dynamics in the transient stage are

dominated by nonlinear, competitive interactions, whereas the dynamics of the other stages are

dominated by linear interactions, such as growth. Coral fusion, simulated using diffusion, promotes

pattern formation in the model, which suggests that dissipative dynamics, in addition to nonlinear

dynamics, should be considered in future research on coral reef models. Three variables, coral and

macroalgae fractional cover and aggregation, are required to resolve state space dynamics of clumped

coral reefscapes, underlining the key role of aggregation in these substrate-bound systems.
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